- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Crossley, Dane A. (2)
-
Joyce, William (2)
-
Wang, Tobias (2)
-
Jensen, Bjarke (1)
-
Smith, Brandt (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Most animals elevate cardiac output during exercise through a rise in heart rate ( f H ), whereas stroke volume (V S ) remains relatively unchanged. Cardiac pacing reveals that elevating f H alone does not alter cardiac output, which is instead largely regulated by the peripheral vasculature. In terms of myocardial oxygen demand, an increase in f H is more costly than that which would incur if V S instead were to increase. We hypothesized that f H must increase because any substantial rise in V S would be constrained by the pericardium. To investigate this hypothesis, we explored the effects of pharmacologically induced bradycardia, with ivabradine treatment, on V S at rest and during exercise in the common snapping turtle ( Chelydra serpentina) with intact or opened pericardium. We first showed that, in isolated myocardial preparations, ivabradine exerted a pronounced positive inotropic effect on atrial tissue but only minor effects on ventricle. Ivabradine reduced f H in vivo, such that exercise tachycardia was attenuated. Pulmonary and systemic V S rose in response to ivabradine. The rise in pulmonary V S largely compensated for the bradycardia at rest, leaving total pulmonary flow unchanged by ivabradine, although ivabradine reduced pulmonary blood flow during swimming (exercise × ivabradine interaction, P < 0.05). Although systemic V S increased, systemic blood flow was reduced by ivabradine both at rest and during exercise, despite ivabradine’s potential to increase cardiac contractility. Opening the pericardium had no effect on f H , V S , or blood flows before or after ivabradine, indicating that the pericardium does not constrain VS in turtles, even during pharmacologically induced bradycardia.more » « less
-
Joyce, William; Crossley, Dane A.; Wang, Tobias; Jensen, Bjarke (, The Anatomical Record)
An official website of the United States government
